References

Ban08

R. N. Bannister. A review of forecast error covariance statistics in atmospheric variational data assimilation. i: characteristics and measurements of forecast error covariances. Quarterly Journal of the Royal Meteorological Society, 134(637):1951–1970, 2008. URL: https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.339, arXiv:https://rmets.onlinelibrary.wiley.com/doi/pdf/10.1002/qj.339, doi:https://doi.org/10.1002/qj.339.

Bue20

Mark Buehner. Local ensemble transform kalman filter with cross validation. Monthly Weather Review, 148(6):2265 – 2282, 2020. URL: https://journals.ametsoc.org/view/journals/mwre/148/6/MWR-D-19-0402.1.xml, doi:10.1175/MWR-D-19-0402.1.

Dee04

D.P. Dee. Variational bias correction of radiance data in the ecmwf system. In ECMWF Workshop on Assimilation of high spectral resolution sounders in NWP, 28 June - 1 July 2004, 97–112. Shinfield Park, Reading, 2004. ECMWF, ECMWF. URL: https://www.ecmwf.int/node/8930.

DR89

John Derber and Anthony Rosati. A global oceanic data assimilation system. Journal of physical oceanography, 19(9):1333–1347, 1989.

EMenard12

Q. Errera and R. Ménard. Technical Note: Spectral representation of spatial correlations in variational assimilation with grid point models and application to the Belgian Assimilation System for Chemical Observations (BASCOE). Atmospheric Chemistry and Physics, 12(21):10015–10031, nov 2012. URL: https://acp.copernicus.org/articles/12/10015/2012/, doi:10.5194/acp-12-10015-2012.

Fis98

M. Fisher. Minimization algorithms for variational data assimilation. In Proceedings of the ECMWF Seminar on Recent Developments in Numerical Methods for Atmospheric Modelling, pages 364–385, September 1998.

FSH+24

Sergey Frolov, Anna Shlyaeva, Wei Huang, Travis Sluka, Clara Draper, Bo Huang, Cory Martin, Travis Elless, Kriti Bhargava, and Jeff Whitaker. Local volume solvers for earth system data assimilation: implementation in the framework for joint effort for data assimilation integration. Journal of Advances in Modeling Earth Systems, 16(2):e2023MS003692, 2024. URL: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2023MS003692, arXiv:https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2023MS003692, doi:https://doi.org/10.1029/2023MS003692.

GY99

Gene H. Golub and Qiang Ye. Inexact preconditioned conjugate gradient method with inner-outer iteration. SIAM J. Sci. Comput., 21(4):1305–1320, December 1999. URL: https://doi.org/10.1137/S1064827597323415, doi:10.1137/S1064827597323415.

HZ16

P. L. Houtekamer and Fuqing Zhang. Review of the ensemble kalman filter for atmospheric data assimilation. Monthly Weather Review, 144(12):4489 – 4532, 2016. URL: https://journals.ametsoc.org/view/journals/mwre/144/12/mwr-d-15-0440.1.xml, doi:10.1175/MWR-D-15-0440.1.

KL08

Andrew V Knyazev and Ilya Lashuk. Steepest descent and conjugate gradient methods with variable preconditioning. SIAM Journal on Matrix Analysis and Applications, 29(4):1267–1280, 2008.

Lor03

Andrew C. Lorenc. The potential of the ensemble kalman filter for nwp—a comparison with 4d-var. Quarterly Journal of the Royal Meteorological Society, 129(595):3183–3203, 2003. URL: https://rmets.onlinelibrary.wiley.com/doi/abs/10.1256/qj.02.132, arXiv:https://rmets.onlinelibrary.wiley.com/doi/pdf/10.1256/qj.02.132, doi:https://doi.org/10.1256/qj.02.132.

MLB18

Stefano Migliorini, Andrew C. Lorenc, and William Bell. A moisture-incrementing operator for the assimilation of humidity- and cloud-sensitive observations: formulation and preliminary results. Quarterly Journal of the Royal Meteorological Society, 144(711):443–457, 2018. URL: https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.3216, arXiv:https://rmets.onlinelibrary.wiley.com/doi/pdf/10.1002/qj.3216, doi:https://doi.org/10.1002/qj.3216.

PBD08

O. Pannekoucke, L. Berre, and G. Desroziers. Background-error correlation length-scale estimates and their sampling statistics. Quarterly Journal of the Royal Meteorological Society, 134(631):497–508, jan 2008. URL: https://onlinelibrary.wiley.com/doi/10.1002/qj.212, doi:10.1002/qj.212.

VdVV94

Henk A Van der Vorst and Cornelis Vuik. Gmresr: a family of nested gmres methods. Numerical linear algebra with applications, 1(4):369–386, 1994.

WCMP21

Anthony T. Weaver, Marcin Chrust, Benjamin Ménétrier, and Andrea Piacentini. An evaluation of methods for normalizing diffusion-based covariance operators in variational data assimilation. Quarterly Journal of the Royal Meteorological Society, 147(734):289–320, 2021. URL: https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.3918, arXiv:https://rmets.onlinelibrary.wiley.com/doi/pdf/10.1002/qj.3918, doi:https://doi.org/10.1002/qj.3918.

ZDC+14

Yanqiu Zhu, John Derber, Andrew Collard, Dick Dee, Russ Treadon, George Gayno, and James A Jung. Enhanced radiance bias correction in the national centers for environmental prediction's gridpoint statistical interpolation data assimilation system. Quarterly Journal of the Royal Meteorological Society, 140(682):1479–1492, 2014. URL: https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.2233, arXiv:https://rmets.onlinelibrary.wiley.com/doi/pdf/10.1002/qj.2233, doi:10.1002/qj.2233.