References

Ban08

R. N. Bannister. A review of forecast error covariance statistics in atmospheric variational data assimilation. i: characteristics and measurements of forecast error covariances. Quarterly Journal of the Royal Meteorological Society, 134(637):1951–1970, 2008. URL: https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.339, arXiv:https://rmets.onlinelibrary.wiley.com/doi/pdf/10.1002/qj.339, doi:https://doi.org/10.1002/qj.339.

Dee04

D.P. Dee. Variational bias correction of radiance data in the ecmwf system. In ECMWF Workshop on Assimilation of high spectral resolution sounders in NWP, 28 June - 1 July 2004, 97–112. Shinfield Park, Reading, 2004. ECMWF, ECMWF. URL: https://www.ecmwf.int/node/8930.

DR89

John Derber and Anthony Rosati. A global oceanic data assimilation system. Journal of physical oceanography, 19(9):1333–1347, 1989.

EMenard12

Q. Errera and R. Ménard. Technical Note: Spectral representation of spatial correlations in variational assimilation with grid point models and application to the Belgian Assimilation System for Chemical Observations (BASCOE). Atmospheric Chemistry and Physics, 12(21):10015–10031, nov 2012. URL: https://acp.copernicus.org/articles/12/10015/2012/, doi:10.5194/acp-12-10015-2012.

Fis98

M. Fisher. Minimization algorithms for variational data assimilation. In Proceedings of the ECMWF Seminar on Recent Developments in Numerical Methods for Atmospheric Modelling, pages 364–385, September 1998.

GY99

Gene H. Golub and Qiang Ye. Inexact preconditioned conjugate gradient method with inner-outer iteration. SIAM J. Sci. Comput., 21(4):1305–1320, December 1999. URL: https://doi.org/10.1137/S1064827597323415, doi:10.1137/S1064827597323415.

KL08

Andrew V Knyazev and Ilya Lashuk. Steepest descent and conjugate gradient methods with variable preconditioning. SIAM Journal on Matrix Analysis and Applications, 29(4):1267–1280, 2008.

Lor03

Andrew C. Lorenc. The potential of the ensemble kalman filter for nwp—a comparison with 4d-var. Quarterly Journal of the Royal Meteorological Society, 129(595):3183–3203, 2003. URL: https://rmets.onlinelibrary.wiley.com/doi/abs/10.1256/qj.02.132, arXiv:https://rmets.onlinelibrary.wiley.com/doi/pdf/10.1256/qj.02.132, doi:https://doi.org/10.1256/qj.02.132.

MLB18

Stefano Migliorini, Andrew C. Lorenc, and William Bell. A moisture-incrementing operator for the assimilation of humidity- and cloud-sensitive observations: formulation and preliminary results. Quarterly Journal of the Royal Meteorological Society, 144(711):443–457, 2018. URL: https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.3216, arXiv:https://rmets.onlinelibrary.wiley.com/doi/pdf/10.1002/qj.3216, doi:https://doi.org/10.1002/qj.3216.

PBD08

O. Pannekoucke, L. Berre, and G. Desroziers. Background-error correlation length-scale estimates and their sampling statistics. Quarterly Journal of the Royal Meteorological Society, 134(631):497–508, jan 2008. URL: https://onlinelibrary.wiley.com/doi/10.1002/qj.212, doi:10.1002/qj.212.

VdVV94

Henk A Van der Vorst and Cornelis Vuik. Gmresr: a family of nested gmres methods. Numerical linear algebra with applications, 1(4):369–386, 1994.

ZDC+14

Yanqiu Zhu, John Derber, Andrew Collard, Dick Dee, Russ Treadon, George Gayno, and James A Jung. Enhanced radiance bias correction in the national centers for environmental prediction's gridpoint statistical interpolation data assimilation system. Quarterly Journal of the Royal Meteorological Society, 140(682):1479–1492, 2014. URL: https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.2233, arXiv:https://rmets.onlinelibrary.wiley.com/doi/pdf/10.1002/qj.2233, doi:10.1002/qj.2233.