References¶
- Ban08
R. N. Bannister. A review of forecast error covariance statistics in atmospheric variational data assimilation. i: characteristics and measurements of forecast error covariances. Quarterly Journal of the Royal Meteorological Society, 134(637):1951–1970, 2008. URL: https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.339, arXiv:https://rmets.onlinelibrary.wiley.com/doi/pdf/10.1002/qj.339, doi:https://doi.org/10.1002/qj.339.
- Dee04
D.P. Dee. Variational bias correction of radiance data in the ecmwf system. In ECMWF Workshop on Assimilation of high spectral resolution sounders in NWP, 28 June - 1 July 2004, 97–112. Shinfield Park, Reading, 2004. ECMWF, ECMWF. URL: https://www.ecmwf.int/node/8930.
- DR89
John Derber and Anthony Rosati. A global oceanic data assimilation system. Journal of physical oceanography, 19(9):1333–1347, 1989.
- EMenard12
Q. Errera and R. Ménard. Technical Note: Spectral representation of spatial correlations in variational assimilation with grid point models and application to the Belgian Assimilation System for Chemical Observations (BASCOE). Atmospheric Chemistry and Physics, 12(21):10015–10031, nov 2012. URL: https://acp.copernicus.org/articles/12/10015/2012/, doi:10.5194/acp-12-10015-2012.
- Fis98
M. Fisher. Minimization algorithms for variational data assimilation. In Proceedings of the ECMWF Seminar on Recent Developments in Numerical Methods for Atmospheric Modelling, pages 364–385, September 1998.
- GY99
Gene H. Golub and Qiang Ye. Inexact preconditioned conjugate gradient method with inner-outer iteration. SIAM J. Sci. Comput., 21(4):1305–1320, December 1999. URL: https://doi.org/10.1137/S1064827597323415, doi:10.1137/S1064827597323415.
- KL08
Andrew V Knyazev and Ilya Lashuk. Steepest descent and conjugate gradient methods with variable preconditioning. SIAM Journal on Matrix Analysis and Applications, 29(4):1267–1280, 2008.
- Lor03
Andrew C. Lorenc. The potential of the ensemble kalman filter for nwp—a comparison with 4d-var. Quarterly Journal of the Royal Meteorological Society, 129(595):3183–3203, 2003. URL: https://rmets.onlinelibrary.wiley.com/doi/abs/10.1256/qj.02.132, arXiv:https://rmets.onlinelibrary.wiley.com/doi/pdf/10.1256/qj.02.132, doi:https://doi.org/10.1256/qj.02.132.
- MLB18
Stefano Migliorini, Andrew C. Lorenc, and William Bell. A moisture-incrementing operator for the assimilation of humidity- and cloud-sensitive observations: formulation and preliminary results. Quarterly Journal of the Royal Meteorological Society, 144(711):443–457, 2018. URL: https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.3216, arXiv:https://rmets.onlinelibrary.wiley.com/doi/pdf/10.1002/qj.3216, doi:https://doi.org/10.1002/qj.3216.
- PBD08
O. Pannekoucke, L. Berre, and G. Desroziers. Background-error correlation length-scale estimates and their sampling statistics. Quarterly Journal of the Royal Meteorological Society, 134(631):497–508, jan 2008. URL: https://onlinelibrary.wiley.com/doi/10.1002/qj.212, doi:10.1002/qj.212.
- VdVV94
Henk A Van der Vorst and Cornelis Vuik. Gmresr: a family of nested gmres methods. Numerical linear algebra with applications, 1(4):369–386, 1994.
- ZDC+14
Yanqiu Zhu, John Derber, Andrew Collard, Dick Dee, Russ Treadon, George Gayno, and James A Jung. Enhanced radiance bias correction in the national centers for environmental prediction's gridpoint statistical interpolation data assimilation system. Quarterly Journal of the Royal Meteorological Society, 140(682):1479–1492, 2014. URL: https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.2233, arXiv:https://rmets.onlinelibrary.wiley.com/doi/pdf/10.1002/qj.2233, doi:10.1002/qj.2233.