Calculate iceThickness from seaIceFreeboard¶
Calculate ice thickness from ice freeboard, ice depth, and the densities of the snow, ice, and surface water.
This will return ice thickness in a variable named (by default) DerivedObsValue/iceThickness. The derived error standard deviations are combined in quadrature into the variables observation error data, as well as the constituent random and systematic components going into RandomErrorStandardDeviation/iceThickness and SystematicErrorStandardDeviation/iceThickness respectively.
Variables used¶
ice freeboard \(f\) (\(m\))
water density \(\rho_w\) (\(kg/m^3\))
snow density \(\rho_s\) (\(kg/m^3\))
ice density \(\rho_i\) (\(kg/m^3\))
snow depth \(d\) (\(m\))
instrument-sourced random error standard deviation of ice density measurements \(\sigma_{\rho_{i}}\) (\(kg/m^3\))
instrument-sourced random error standard deviation of ice freeboard measurements \(\sigma_f\) (\(m\))
instrument-sourced systematic error standard deviation of snow density measurements \(\sigma_{\rho_{s}}\) (\(kg/m^3\))
instrument-sourced systematic error standard deviation of snow depth measurements \(\sigma_d\) (\(m\))
Output Variables¶
calculated random error standard deviation of the derived ice thickness \(\sigma_{tR}\) (\(m\))
calculated systematic error standard deviation of the derived ice thickness \(\sigma_{tS}\) (\(m\))
ice thickness \(t\) (\(m\))
Parameters¶
Inputs:
ice freeboard variable
: Sea ice protruding above the water surface level variable (defaultObsValue/seaIceFreeboard
)ice density variable
: Density of the ice variable (defaultObsValue/iceDensity
)snow depth variable
: Depth of the snow on top of the ice variable (defaultObsValue/totalSnowDepth
)snow density variable
: Density of the snow on top of the ice variable (defaultObsValue/snowDensity
)sea water density variable
: Density of the sea water below the ice variable (defaultObsValue/seaWaterDensity
)
Inputs if calculating error:
calculate error standard deviations
: (defaulttrue
)ice freeboard error standard deviation variable
: (defaultObservedErrorStandardDeviation/seaIceFreeboard
)ice density error standard deviation variable
: (defaultObservedErrorStandardDeviation/iceDensity
)snow depth error standard deviation variable
: (defaultObservedErrorStandardDeviation/snowDepth
)snow density error standard deviation variable
: (defaultObservedErrorStandardDeviation/snowDensity
)
Outputs:
ice thickness variable
: Thickness of the sea ice including both above and below the water surface level variable (defaultDerivedObsValue/iceThickness
)ice thickness systematic error standard deviation variable
: (defaultSystematicErrorStandardDeviation/iceThickness
)ice thickness random error standard deviation variable
: (defaultRandomErrorStandardDeviation/iceThickness
)
Example yaml block¶
obs filters:
- filter: Variable Transforms
Transform: Calculate iceThickness from seaIceFreeboard
ice freeboard variable: ObsValue/seaIceFreeboard
sea water density variable: ObsValue/seaWaterDensity
snow depth variable: ObsValue/totalSnowDepth
snow density variable: ObsValue/snowDensity
ice density variable: ObsValue/iceDensity
ice freeboard error standard deviation variable: \
ObservedErrorStandardDeviation/seaIceFreeboard
ice density error standard deviation variable: \
ObservedErrorStandardDeviation/iceDensity
ice thickness variable: iceThickness
ice thickness systematic error standard deviation variable: \
SystematicStandardDeviation/iceThickness
ice thickness random error standard deviation variable: \
RandomStandardDeviation/iceThickness
Method¶
The ice thickness is calculated using the formula from (Ricker et al. 2014). In that paper they refer to the ice freeboard as the radar freeboard, this is because they assume these two quantities are equal. We maintain the distinction to allow us flexibility when calculating the ice freeboard from the radar freeboard.
The filter will also (optionally) propagate the uncertainties through Gaussian error propagation to give the random error standard deviation on the thickness, assuming the ice freeboard and ice density uncertainties are random and uncorrelated:
The filter will also optionally give the systematic error, assuming that the errors on snow depth and snow density are systematic: